Acta Crystallographica Section C Crystal Structure Communications

ISSN 0108-2701

1,5-Diphenyl-4,8-bis(3-phenylpyrazol-1-yl)pyrazabole

Fábio A. Kunrath,^a Osvaldo L. Casagrande,^b Loïc Toupet^{c*} and Jean-François Carpentier^d

^aInstituto de Química de Araraquara, UNESP, CP 355, Araraquara SP, 14800-900, Brazil, ^bLaboratório de Catálise Molecular, Instituto de Química, Universidad Federal do Rio Grande do Sul, Avenida Bento Goncalves 9500, Porto Alegre RS, 90501-970, Brazil, ^cGroupe Matière Condensée et Matériaux, UMR 6626, CNRS, Université de Rennes I, Campus de Beaulieu, 35042 Rennes Cedex, France, and ^dLaboratoire Organométalliques et Catalyse, UMR 6509, CNRS, Université de Rennes 1, 35042 Rennes Cedex, France

Correspondence e-mail: loic.toupet@univ-rennes1.fr

Received 16 June 2005 Accepted 8 July 2005 Online 30 July 2005

The six-membered B_2H_4 ring of the title compound, $C_{36}H_{30}B_2N_8$, adopts a slightly distorted boat conformation, with the terminal B substituents in a *trans* orientation. One 3-phenylpyrazolyl group is in an equatorial position, whereas the second is in an axial position with respect to the plane defined by the B atoms.

Comment

First introduced by Trofimenko (1967), pyrazaboles constitutes a unique class of heterocyclic compounds containing a B-N bond, mainly due to their high chemical and thermal stability (Trofimenko, 1999). In recent decades, a series of pyrazaboles have been reported in the literature (Niedenzu, 1988), and have been used as building blocks for discotic liquid crystals (Barberá *et al.*, 1994) and as bridges for ansa-ferrocenes to form active container molecules for supramolecular applications (Jäkle *et al.*, 1996; Herdtweck *et al.*, 1996). The structural characterization of these compounds has become an important tool for defining their conformational structures in the solid state. Fig. 1 shows the possible conformations of pyrazaboles.

Most of the pyrazabole derivatives which have been structurally characterized to date are related to symmetrical pyrazaboles, $R_2B(\mu-pz)_2BR_2$ (R = H, Et, Pz, Ph, F or Br, and pz = pyrazol-1-yl) (Barberá *et al.*, 2000; Clarke *et al.*, 1987; Hanecker *et al.*, 1985; Atwood *et al.*, 1992) or $R^1RB(\mu-pz)_2$ - BRR^1 (R = Et or Ph, and $R^1 = Pz$ or Br) (Niedenzu & Nöth, 1983; Bielawski *et al.*, 1986), and asymmetrical pyrazaboles, such as $R_2B(\mu-pz)_2BR^1_2$ (R = H or Cl, and $R^1 = Pz$ or Ph) (Clarke *et al.*, 1987) or $R_2B(\mu-pz)_2BR^1R^2$ (R = H, $R^1 = H$, and $R^2 = Br$) (Hodgkins & Powell, 1992; Brock *et al.*, 1985). On the other hand, although several papers report the synthesis and spectroscopic characterization of symmetrical disubstituted 4,8-bis(pyrazolyl-1-yl)pyrazaboles, $H(Pz')B(\mu-pz)_2B(Pz')H$ (Pz' = pyrazol-1-yl or 3,5-dimethylpyrazol-1-yl) (Trofimenko, 1967; Blosch *et al.*, 1992), only the structural characterization of $H(Pz)B(\mu-pz)_2B(Pz)H$ (Pz = pyrazol-1-yl), (II), has been described to date (Kresinski, 1999). Here, we describe the crystal and molecular structure of the novel $H(Pz')B(\mu-pz)_2$ -zB(Pz')H compound (Pz' = 3-phenylpyrazol-1-yl), (I). Selected bond distances and angles are listed in Table 1.

Fig. 2 shows that the six-membered B_2N_4 ring adopts a slightly distorted boat conformation, with the terminal B substituents in a *trans* orientation. The B atoms are tetra-coordinated, as confirmed by the almost ideal sp^3 -hybrydization sphere around them. The two terminal pyrazolyl groups (at the 4- and 8-positions) occupy one axial position and one equatorial position. The dihedral angles between the least-squares plane through the four central atoms of the ring (N1,

Figure 1 Possible conformations of pyrazaboles.

A view of the molecular structure of compound (I), showing the atomnumbering scheme. Displacement ellipsoids are drawn at the 40% probability level and H atoms are shown as small spheres of arbitrary radii.

N2, N5 and N6) and the N2/B2/N5 and N1/B1/N6 planes are 32.42 (2) and 24.11 (2)°, respectively. The B–N [average B– N = 1.550 Å, range 1.513 (2)–1.571 (2) Å] and N–N [average N–N = 1.367 Å, range 1.3633 (17)–1.3708 (18) Å] bond distances are comparable with those found in related compound (II) (average B–N = 1.541 Å and average N–N = 1.360 Å; Kresinski, 1999). In contrast with what is observed in (II), the B–H bond distances in the pseudo-equatorial (pe) and pseudo-axial (pa) positions of (I) are very similar [B–H_{pe} = 1.12 (2) Å and B–H_{pa} = 1.13 (2) Å], suggesting that the negative charges on the H atoms are equally distributed. One of the four 3-phenylpyrazolyl groups features the pyrazolyl and the phenyl rings in a coplanar orientation (torsion angle N8–C30–C31–C36 = -1.98°), while the others display torsion angles ranging from 34.55 to 60.33°.

The overall structure of (I) is extended through selfcomplementary $C-H\cdots N$ hydrogen bonds that involve the bridging pyrazolyl group (C19-H19) of one molecule and an N atom (N8) of the terminal pyrazolyl unit of a second molecule. As shown in Fig. 3, this results in the formation of a dimer, with the pyrazabole rings in a mirror-like array across the centre of symmetry. The intermolecular C19-H19 \cdots N8 contacts of 2.60 Å (Table 2) are within the sum of the van der Waals radii for H and N atoms (2.75 Å; Kresinski, 1999) and are longer than the C-H \cdots N contacts [2.41 (2) and 2.52 (2) Å for the two independent molecules] observed in related pyrazabole compound (II) which has no phenyl substituent on the pyrazolyl rings (Kresinski, 1999). Steric crowding induced by the phenyl substituents most likely accounts for the longer C-H \cdots N contacts in (I).

Despite the presence of many aromatic rings in (I), *i.e.* the four phenyl substituents and the four pyrazolyl rings, only

Figure 3

A view of (I), showing the dimeric aspect of the structure [symmetry code: (i) 1 - x, -y, 1 - z]. Distances are given in Å.

Experimental

The title compound was obtained as a co-product from the reaction of anhydrous YCl₃ (0.25 g, 1.28 mmol) and potassium hydrotris(3-phenylpyrazolyl)borate (KTp^{ph}) (0.61 g, 1.28 mmol) in tetrahydrofuran. The mixture was stirred at 293 K for 7 d, over which time the amount of insoluble material decreased. Volatiles were removed under vacuum and the residue was extracted with toluene (2 × 20 ml). The resulting colourless filtrate was evaporated under vacuum and the residue washed with pentane. Crystals of (I) suitable for X-ray diffraction were grown from a 1:2 toluene–pentane solution at 239 K.

Crystal data

$C_{36}H_{30}B_2N_8$	$D_x = 1.294 \text{ Mg m}^{-3}$
$M_r = 596.30$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/n$	Cell parameters from 7153
a = 11.3980 (2) Å	reflections
b = 22.6068 (4) Å	$\theta = 1.0-27.5^{\circ}$
c = 13.1547 (2) Å	$\mu = 0.08 \text{ mm}^{-1}$
$\beta = 115.4290 \ (10)^{\circ}$	T = 120 (1) K
V = 3061.21 (9) Å ³	Prism, colourless
Z = 4	0.20 \times 0.18 \times 0.10 mm
Data collection	
Nonius KappaCCD area-detector	$\theta_{\rm max} = 27.5^{\circ}$
diffractometer	$h = 0 \rightarrow 14$
ω scans (1.4°)	$k = 0 \rightarrow 29$
6995 measured reflections	$l = -17 \rightarrow 15$
6995 independent reflections	
5037 reflections with $I > 2\sigma(I)$	

Table 1

Selected geometric parameters (Å, °).

N1-C1	1.3403 (19)	N6-B1	1.571 (2)
N1-N2	1.3677 (17)	N7-C28	1.356 (2)
N1-B1	1.567 (2)	N7-N8	1.3708 (18)
N2-C3	1.360 (2)	N7-B1	1.513 (2)
N2-B2	1.539 (2)	N8-C30	1.3420 (19)
N3-C10	1.351 (2)	C1-C2	1.378 (2)
N3-N4	1.3657 (17)	C2-C3	1.389 (2)
N3-B2	1.542 (2)	C10-C11	1.362 (2)
N4-C12	1.342 (2)	C11-C12	1.404 (2)
N5-C19	1.3441 (19)	C19-C20	1.381 (2)
N5-N6	1.3633 (17)	C20-C21	1.390 (2)
N5-B2	1.571 (2)	C28-C29	1.362 (2)
N6-C21	1.3550 (19)	C29-C30	1.411 (2)
C1-N1-N2	108.33 (12)	C21-N6-N5	108.44 (12)
C1-N1-B1	126.86 (13)	C21-N6-B1	131.37 (13)
N2-N1-B1	124.80 (12)	N5-N6-B1	119.88 (12)
C3-N2-N1	108.14 (12)	C28-N7-N8	110.41 (12)
C3-N2-B2	132.66 (13)	C28-N7-B1	126.45 (13)
N1-N2-B2	118.83 (12)	N8-N7-B1	121.68 (12)
C10-N3-N4	110.24 (12)	C30-N8-N7	105.42 (12)
C10-N3-B2	125.39 (13)	N1-C1-C2	109.27 (14)
N4-N3-B2	124.08 (12)	C1-C2-C3	106.17 (14)
C12-N4-N3	105.34 (12)	C10-C11-C12	104.60 (14)
C19-N5-N6	108.47 (12)	C19-C20-C21	106.28 (13)
C19-N5-B2	128.48 (13)	C28-C29-C30	104.99 (14)
N6-N5-B2	122.34 (12)		

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + (0.0684P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.048$	+ 0.647P]
$wR(F^2) = 0.131$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.05	$(\Delta/\sigma)_{\rm max} < 0.001$
6995 reflections	$\Delta \rho_{\rm max} = 0.22 \ {\rm e} \ {\rm \AA}^{-3}$
422 parameters	$\Delta \rho_{\rm min} = -0.27 \text{ e } \text{\AA}^{-3}$
H atoms treated by a mixture of	Extinction correction: SHELXL97
independent and constrained	(Sheldrick, 1997)
refinement	Extinction coefficient: 0.0085 (9)

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C19-H19\cdots N8^{i}$	0.93	2.60	3.489 (2)	160

Symmetry code: (i) 1 - x, -y, 1 - z.

All H atoms were located in a difference Fourier synthesis, but those attached to C atoms were treated as riding on their parent C atoms, with C-H = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$. H atoms attached to B atoms were freely refined with a fixed U_{iso} value.

Data collection: *KappaCCD Server Software* (Nonius, 1999); cell refinement: *SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *SCALEPACK* and *DENZO* (Otwinowski & Minor, 1997); program(s) used to solve structure: *SIR97* (Altomare *et al.*, 1998); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *PLATON* (Spek, 2003); software used to prepare material for publication: *SHELXL97*.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: DN1094). Services for accessing these data are described at the back of the journal.

References

- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1998). J. Appl. Cryst. 31, 74–77.
- Atwood, V. O., Atwood, D. A., Cowley, A. H. & Trofimenko, S. (1992). Polyhedron, 11, 711–714.
- Barberá, J., Giménez, R. & Serrano, J. L. (1994). Adv. Mater. 6, 470-476.
- Barberá, J., Giménez, R. & Serrano, J. L. (2000). Chem. Mater. 12, 481–489.
- Bielawski, J., Hanecker, M. K., Das, E., Niedenzu, K. & Nöth, H. (1986). *Inorg. Chem.* 25, 4623–4628.
- Blosch, L. L., Gamble, A. S., Abboud, K. & Boncella, J. M. (1992). Organometallics, 11, 2342–2344.
- Brock, C. P., Niedenzu, K., Hanecker, E. & Nöth, H. (1985). Acta Cryst. C41, 1458–1463.
- Clarke, C. A., Mariategui, J. F., Bielawski, J., Hanecker, M. K., Das, E., Niedenzu, K., Niedenzu, P. M., Nöth, H. & Warnert, K. R. (1987). *Inorg. Chem.* **26**, 2310–2317.
- Hanecker, E., Hodgkins, T. G., Niedenzu, K. & Nöth, H. (1985). *Inorg. Chem.* 24, 459–462.
- Herdtweck, E., Jäkle, F., Opromolla, G., Spiegler, M., Wagner, M. & Zanello, P. (1996). Organometallics, **15**, 5524–5535.
- Hodgkins, G. T. & Powell, D. R. (1992). Acta Cryst. C48, 1260-1262.
- Jäkle, F., Priermeier, T. & Wagner, M. (1996). Organometallics, 15, 2033– 2040.
- Kresinski, R. A. (1999). J. Chem. Soc. Dalton Trans. pp. 401-405.
- Niedenzu, K. (1988). Adv. Boron Boranes, 5, 357-372.
- Niedenzu, K. & Nöth, H. (1983). Chem. Ber. 116, 1132-1135.
- Nonius (1999). KappaCCD Server Software. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Trofimenko, S. (1967). J. Am. Chem. Soc. 89, 3165-3170.
- Trofimenko, S. (1999). Scorpionates: The Coordination Chemistry of Polypyrazolylborate Ligands. London: Imperial College Press.